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MASS TRANSFER IN THE GASEOUS PHASE IN THE
CASE OF NONEQUIMOLAR TRANSER OF MATTER
IN A FILM COLUMN

E. N. Konstantinov, V. F. Petin, UDC 66.048
V. A, Kuznechnikov, and E. Sh. Telyakov

The article analyzes the literature data on the effect of the concentration of an inert gas on the mass-
transfer coefficient and treats the published data on evaporation in a film column, A system of differential
equations of the process of simultaneous heat and mass transfer is given for the calculation.

It was established that the equation of nonequimolar mass transfer obtained from the Stefan—Boltz-
mann relations according to the film theory of mass transfer describes satisfactorily mass transfer in
binary mixtures also in the case of turbulent gas flow in film columns. Consequently, for the conditions
considered, this equation is obtained by solution of the time-averaged equations of motion, continuity, and
diffusion. On this one can obtain the equation of nonequimolar transfer of matter in multicomponent mix-
tures, bearing in mind that in the case of insignificant velocities of mass transfer in comparison with the
velocity of the medium the equations of motion are the same for binary and multicomponent mixtures, and
one can describe diffusion in multicomponent mixtures by approximate linearized equations. For a slight
change of concentration in the direction of transfer the article presents a derivation, using matrix trans-
formations, of an equation which shows that the difference between the total quantity of the component being
transferred and that quantity which is transferred by the total flow is determined by the usual equation of
equimolar transfer, This permitted the use of the known approximate equation of equimolar mass transfer
in multicomponent mixtures to write the equation of nonequimolar mass transfer in a general form

n
N;— yiaVNE:ZI Bis (wesyi — yitif)
=

where N is the molar flow of matter; N; is the total transverse flow of matter; y is the mole fraction; g;
is the mass-transfer coefficient corresponding to the multicomponent mixture. Subscripts 1, 2, i, j de-
note the components or transformed functions; n denotes the number of components; av denotes the arith-
metic mean; f denotes the interface.
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DETERMINATION OF THE CRITICAL ELECTROSTATIC
FIELD STRENGTH FOR A FLOWING FILM OF
LIQUID DIELECTRIC

G. F. Smirnov and V. G. Lunev UDC 66.063.8.537.27

An increase of the heat-transfer coefficient during condensation of Freons in an electrostatic field
upon reaching a certain value of field strength @bout 2 kV/mm) was noted in {1, 2], In this case visual
observation revealed runoff of the condensate from the electrodes.

The article considers the flow of the film of a liquid dielectric on a fiat plate in an electrostatic field
in order to determine the effect of the physical parameters of the dielectric on the magnitude of the criti-
cal field strength at which separation of the dielectric from the surface occurs.

The critical field strength is determined from conditions of equality of the surface tension forces
and electrostatic field during steady flow of the film.

In determining the forces it was assumed in the first approximation:

1) that the electrostatic field strength in the film and in the vapor differ insignificantly from the
strength in the case of plane flow of a dielectric film;

2) that, for wave flow of the dielectric, 1 + y* =1, which is valid in the case of a small curvature
of the surface of the waves (A > hy).

In conformity with the assumptions made, the surface_bound charge density at the phase interface on
the side of the liquid

o1 =1 (1)

u=E, o

The density of the surface ponderomotive forces acting on these charges,

Pe=rE LD (2

or, using Eq. @),
Elz,a (8_2 —1) 3
Pe= 025.21 ' ( )

[

With consideration of the assumptions made and [3] for a movirig thin liquid film, the density of the
surface tension forces can be determined for the wave crest

P, = — akoh,. (4

The critical electrostatic field strength is determined from the condition | Pg| =[P |:

2a0h0 5
,-kSl ‘/ ED(S%—I) . ()

In [4] the parameters of a steady wave flow k, «, and hy are determined from the condition of 2 mini-
mum value of the potential energy and the presence of a harmonic character of the film flow.

The energy of the electrostatic field per unit volume is

E2g h
B 0 %o o
Tp.e.: 5 [I—J,-—d (Sl“l)] . (6)

It is seen from Eq. (6) that with a decrease of the film thickness the potential energy of the electro-
static field, like the gravitational forces, decreases. Consequently, to a first approximation the param-
eters of a wave flow determined-according to [3, 4] can be used in determining the critical field strength.

Original article submitted February 13, 1970; abstract submitted January 14, 1971.
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Calculations by Eq. (5) with the use of the data of experimental studies [1, 2] gave the following values
of the field strength at which separation of the film occurs: for Freon-113 [1] Egy = 1.4 kV/mm; for Freon-
11 [2] E,. =1.6 kV/mm.

NOTATION
Eg is the strength of the electrostatic field created by free charges of the electrodes;
Eqp is the critical electrostatic field strength;
Tp.e. is the potential energy;
P is the density of the surface ponderomotive forces;
Py is the density of the surface tension forces;

d is the distance between electrodes;

h is the thickness of the liquid dielectric film;

hy is the average film thickness;

y is the moving coordinate of the axis perpendicular to the surface of the plane wall;
k is the wave number;

A=2n/k is the wavelength;

o is the coefficient determining the amplitude of the wave flow of the film;

o is the surface tension force;

Y is the surface-bound charge density of liquid dielectric at phase interface;
€ is the dielectric constant;

€ is the permittivity of free space.
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DETERMINATION OF HEAT INFLUXES THROUGH
THE NECK OF A CRYOGENIC LIQUID CONTAINER

L. I. Roizen, Yu. V. Petrovskii, UDC 536.22
and G. R. Rubin

Evaporation caused by heat influxes through the neck of a vessel of cryogenic liquid is analytically
studied in the article. A calculation is conducted taking into account the temperature dependence of the
heat-conduction coefficient of the material of the neck. The problem is solved with the following assump-
tions: 1) the coefficient of heat exchange of the wall of the neck with the gas is constant; 2) the physical
properties of the gas do not depend on the temperature; 3) axial heat conduction through the gas is absent;
4) heat influxes to the neck through the container insulation are negligibly small.

With the assumptions made, the equations of heat conduction for the wall of the neck and of energy
for the gas flow are converted to the form

e )
i._—:<—> AT T+K—D, (1)
ar A

V. L Lenin All-Union Electrotechnical Institute, Moscow. Original article submitted July 13, 1970;
abstract submitted February 1, 1971.
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‘where

i - Q 4 mcL r
Q‘mc(T.)mTc)’ s 7 K= e(Ty—T.) '
apl?* \12 T —Tq.
B = T =
( s ) T""Tc

@ is the heat flux along the neck; T is the wall temperature; Tyand T, are the temperatures of the hot and
cold ends of container neck; m is the evaporation of the liquid; C is the isobaric heat capacity of the gas;

A is the coefficient of heat conduction; s, p are the area and perimeter of the cross section of the neck
wall; L is the neck; r is the latent heat of vaporization; « is the heat-exchange coefficient),

Equatign (1) is solved numerically at a fixed value of the parameter B/ A, as a result of which the
dependence Q(T) is obtained. The variable A was computed from the values of Q (T)
MT) dT
Q

[
4=
0

The dependence A ={(B) is obtained over the range 0 < B < 50. The calculations were conducted on
the Minsk-22 computer for liquid helium and hydrogen. The temperature of the hot end of the neck (T was
chosen to be equal to the temperature of the surrounding medium (300°K), of liquid nitrogen, and hydrogen
(77.4 and 20.4°K, respectively). The neck material was Kh18N10T steel.

The results of the calculation are presented in the form of graphs of the dependence of the dimen-
sionless evaporation A/ A on the dimensionless parameter 8 =B VA = LV ap/sh ( is the mean integral
heat-conduction coefficient). A comparison with the solution for A = A = const is presented; it is shown that
in this case the value A/X is 2.5 times higher for liquid helium and 35% higher for liquid hydrogen at T,
= 300°K.

THE EFFECT OF THE TEMP]‘ERATURE DEPENDENCE
OF CONDUCTIVITY ON THE TEMPERATURE DISTRIBUTION,
CURRENT, AND ELECTROMAGNETIC FIELD IN A PLANE LAYER

R. S. Kuznetskii UDC 538.56+536.212.2

The steady-state temperature and electromagnetic field in the plane layer |z| < 1 on the cooled sur-
faces of which a constant temperature is specified, as well as a monochromatic tangential electrical field
of amplitude e?, is the solution of the following system of equations and boundary-value conditions:

¢ =—ocle?, = 2ivice; ¢t (1)=t' (0)=¢' (0)=0, e (1)=1; (1)

j=oceand h =ie' determine e, Here z is a coordinate; t is the temperature; ¢ = o (t) =1 — kt is the con-
ductivity; e, h, and j are complex amplitudes of the electrical and magnetic fields and current densities
referred, respectively, to the quantities a, 0%@e®?/22, ¢®=0(0), €, e’/ auw, 0%% A, u, @, 2a are the
thermal conductivity, magnetic permeability, temperature conductivity coefficient, and thickness of the
plane layer; ¢ is the frequency; v =1n/2 = av ¢%w/2; k = 6%@e®20/22; e is parallel to e¥; h is orthogonal
to €’ and parallel to the layer surfaces.

By seeking the solution in the form of a2 series t = 2 kltl , one obtains for the coefficients linear

=0

equations which can be integrated in quadratures. In particular, the first approximation assumes a familiar

Original article submitted June 24, 1970; abstract submitted January 5, 1971.
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Fig. 1. The dependence of
t, on z for various values
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for the first correction proportional to k one obtains

nc, (1) — S, (1) 1 fs(m)
2n8c? (n) ty = {“—236%(71)— [8; (2n) — 2f4 (M)] ~— = [6 C—jm + 7c2(n)J + 2, (n)} [€g (1) — Co (12)]

1 ,
5 (AU () = i (r2)] + Bl (2) — &y 2n2)]} =y (n) s (n) — 25 ()] (3)

-1
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ney (n)—s, (n)

¢ (n)
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o (1)

2ngc% (n) Im ey=— [cy (n) nz — s, (n2)] fﬁ2_34 +

(s () Fay + 11 (0) + 1] Figa)

1 fs(n) 7 _ )
= {3 [62 (n)—c, (n2)—4 m} s + [ex ()= (n2)] fﬁaaf ; (5)
) Cp (1) — ¢y (n2) .
hze!“""otoz"l_w (Ffiss +Fiza1): (6)
ney (1) — s (1)
Q]
f3 (m)
¢ (n)
ney (n) — 5, (1)

o (n)

4

1
X {U1 (n) + 11 f;;‘;z +f5(n) fazg} + ? {[Cx (n)— ¢; (n2)] fﬁSZ + Bs; (n2) f1—331 -+ {12 47 [ey (M)—cp (”2)1} ff‘ig;;} B

4
4nc% (n}Imhy =2 {02 (n) nz——S— Sy (nz)] fiase +

finy+1
[ (n)

1
X {1y () 1 Fazg — Fa (1) i} + - {7 [y (n) — ¢ (n2)] fraap + [12 —e ()¢ (nz)} Fihas — 651 (n2) fﬁag} :

Here 01’2(5) =cosh¢ + cosé; sm(g) =sinh{ + siné; f(5) = cosh{ cosé, f2’4(§) = cosh{ sin{ * sinhfcosé,
f,(6) = sinh £ siné; f§z ms = £ (v, 2) = fg(y)fl (vz) + £, ()fg(vz).

As shown in Fig. 1, t;, as well as the moduli and phases of e, h;, and f;, have been analyzed as func-
tions of z, calculated, and plotted, for various values of the parameter v; the limiting cases have been in-
vestigated in detail. The conditions under which the obtained approximation could be used were also estab-
lished.
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CALCULATION OF THE TURBULENT CHARACTERISTICS
OF FLOW IN A PLANE CURVILINEAR DUCT

B. P. Ustimenko and N. D. Gobyzova UDC 532.54

We consider the steady-state circular motion of an incompressible viscous fluid under pressure in a
plane curvilinear duct. The following equations hold for this type of flow: vy = Vi Vr = Vi Vg = Vo + V;,,;
P=p+ph Vg = Vp=0; vy = Ve(r); p = p(r, ¢); and thg derivatives of the averaged variables with respect to
the coordinates x and ¢ vanish at zero (except that 8p/0 ¢ = 0).

The equations for the components of the correlation tensor Vi"’i have the same form as for the case of
circular flow between rotating cylinders [1].

In the derivation of the equations we used semiempirical relations for the dissipation of fluctuation

motion:
3‘\ v, v, v, U, 2c E¥2
i i [}
=2 — e =y ——— L §;; —
b VZ' ax,- axi va 2 + H 3 12

k=1

and for the exchange of energy between different components of the velocity fluctuations [2]:

1 (), or) 1/73’(,, 2
-p—P <F£J—+§)—Cl‘>:—k“l— vivi—ﬁij—é—E).

In order for these equations to be closed they must be augmented with the equation of average motion

i(g'v'-ﬂ):vi[ﬁ‘ M}—i- % (Ep_ _—.const)
dr

re dr . dr e “op- d¢

and the turbulence scale l must be determined.

In order to simplify the calculations we consider separately the flow domains near the duct walls,
where vq,/ r « v,/ and, therefore, Re,; « Rey, and in the central part of the flow, where the motion
approximates potential flow, vyr = 8 = const, and it is permissible to let

21 d _
Rel+Reml= “v— P . (v,r)=0.

The distributions of the average velocity, turbulent friction stress, fluctuation intensities of the
velocity vector components, and other characteristics exhibiting good agreement with experiment [3-4]
are obtained on integrating the derived equations.

The analytical equations have the form

fo_ [ o 43 (kle—1)Reg 2 (Reg + &1/¢) ]"2 )

v (E[e)Rep +cjc . (kio) Reg + eyfe

*i

£34

1/ uTr [ 23 kic—1)Reg Y2 Rep |
v | @Y Reg +ailc) (lv*ij '
v

]/;:_[ 2/3 (ke — 1) Reg, 2 (Reg + ¢,/0) ]‘/2 Reg

Vyr (k/c) Reg + ¢/c (kfc) Reg + 6,/0) log;
v
v; v('p —cReg + ¢ Re)zg
P - Rey fogi \?
v

Kazalkh Scientific-Research Institute of Power Engineering, Alma-Ata, Original article submitted
July 20, 1970; abstract submitted January 1, 1971,
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for flow near the walls, and

VvV

14

oy,

v

413 Re 12 Re
— | 9_9p1/3 ol E
|:2 ¢+ FReg

E34

—2

2/3 12 '
A Y S " Re, Reg
k Reg w,,

v %1

v

*i

=7
]/Uq; 12 e Reg

?

Ui bog;
v
v v Re?
e _2n_E
fu =7 et
v
for the potential flow domain.
NOTATION
E is the fluctuation kinetic energy;
1 is the turbulence scale;
ciy C, k are empirical constants;
5ij is the Kronecker delta;

Vs Vs Voo Ps Vs Vi Vi, p' arethe average and fluctuation values of the velocity vector components and
pressure, respectively;

p is the density;

v is the kinematic viscosity coefficient;

n is a universal coordinate;

Ti, Ty are the tangential friction stresses at the walls;

Vi _ is the dynamic velocity;

Rey = (*&v ,/or)/v;

Reyy = (2vyp/ 1)/ v;

Reg = IWE/p are dimensionless local criteria,
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HEAT TRANSFER IN THE NUCLEATE BOILING
OF FREE-FLOWING LIQUID FILM

I. V. Domanskii UDC 536.242

The principal mechanism responsible for heat transfer in the nucleate boiling of a free-flowing film
at moderate heat inputs is convection. The heat-transfer process can therefore be described by means of
the following equation from the semiempirical theory of turbulent heat transfer:

provided that the dynamic velocity u, 1s expressed in terms of the total energy dissipation E; in the layer
adjacent to the wall, in the form u, = VVE07 p. Here A, p, and p are the thermal conductivity, kinematic
viscosity, and density of the liquid; and Pr is the Prandtl number,

In the case of boiling of a free-flowing film the quantity E; consists of the energy dissipation due to
flow of the film and the dissipation due to the rapid growth of vapor bubbles on the heat-exchange surface
1. A

The heat-transfer equation deduced from these assumptions appears as follows after transformation
to a form suitable for engineering calculations:

o -V1+ 2y i
G o
where « is the heat-transfer coefficient for free flow of the film and @}, is the heat-transfer coefficient for

boiling of the liquid in a thin film and may be assumed to be proportional to the heat-transfer coefficient
®pb for pool boiling, i.e.,

=0 Aphr
The value of the proportionality factor e is determined experimentally.

The validity of Eq. (1) was tested experimentally on a system the principal working component of
which is a stainless steel (steel 1Kh18N9T) tube 1 m in length. An electric heater is located inside the
tube. The liquid, preheated to the boiling point, was made to flow in a film over the exterior surface of
the tube, The experiments were conducted with ethyl alcohol at atmospheric pressure.

The validity of Eq. (1) was also confirmed by comparison with the experimental data obtained in [2]
for film boiling of water on the interior surface of a copper tube.

It was established by comparison of the data of Eq. (1) with the éxperimental results that the propor-
tionality factor a in expression (2) may be assumed to be constant and equal to 0.5.
LITERATURE CITED
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EFFECT OF RADIATION ON HEAT TRANSFER
IN PLANE LAYERS OF LIQUID

T. V. Gurenkova, P. A, Norden, UDC 536.3
and A. G, Usmanov

in the measurement of heat conduction coefficients of liquids special attention has recently been
turned to errors connected with the effect of radiation.

In this article the results of a study of temperature fields in plane layers of liquid in the absence of
free convection are presented and a tentative evaluation of the radiant component of the effective coeffi-
cients of heat conduction of 11 liquids (saturated hydrocarbons, alcohols, toluene, benzene, and water) is
given,

The temperature fields were constructed from interferograms taken on an IAB-451 instrument, con-
verted into a diffraction interferometer. An LG-75 optical quantum generator [1] was used as the light
source,

The effective coefficients of heat conduction of the liquids were measured by the relative method on
a plane layer. The thickness of the layer studied varied over the interval from 6 =1.20 to 6.00 mm. All
the studies were conducted in the region of room temperatures; the temperature difference at the boundary
layers was from 0.5 to 5.0°K.

The interferograms and temperature distributions constructed from them (Fig. 1) graphically show
that under the same conditions the temperature distributions in water and octane have different natures,
For octane, as well as for all the saturated hydrocarbons, toluene, and benzene studied, the temperature
distribution represents a curve the nature of which depends on the thickness of the layer studied, the tem-
perature difference at the boundaries, and the optical properties of the medium. For water and alcohols,
which absorb strongly in the infrared region of the spectrum, the temperature distribution always remains
linear,

A monotonic dependence of the effective coefficient of heat conduction of saturated hydrocarbons,
benzene, and toluene on the thickness of the layers studied was discovered. The dependence obtained

Fig. 1. Interferograms of tem-~
perature fieids in layers of water
(@) and octane (b, c¢) and temper-~
ature distributions constructed
from them: 1) octane; 2) water.

o

S. M. Kirov Chemical-Engineering Institute, Kazan'. Original article submitted September 23,
1970; abstract submitted Japuary 13, 1971.
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allowed a tentative evaluation of the magnitude of the radiant component of the effective heat-conduction
coefficient. This value was negligibly small for water and aleohols, while for saturated hydrocarbons,
benzene, and toluene under the conditions of our experiment it was from 3.7 to 7.6%.

Thus, the experimental results showed that, in the room temperature region radiant heat exchange,
accompanying the molecular heat conduction, can affect in a marked fashion the temperature distribution
and effective coefficient of heat conduction of liquids.

LITERATURE CITED
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THE EQUIVALENT THERMAL CONDUCTIVITY OF
A STACK OF SHEETS OF ELECTROTECHNICAL STEEL

A, I. Bertinov, O. M., Mironov, UDC 536.21:621.3.042.2
V. N. Bazarov, and V. F. Ivanov

Eqmvalent thermal conductivities are given in Table 1 for packs of transformer sheet steel of grades
E31 K44, and Hyperco, the values are for compression up to 2.8 -10" N/m? at 60-180°C and heat fluxes
of 0.98-4.4 W/cm? (Fig. 1).

A description is given of the apparatus, the experimental methods, and the calculations, and also
a roughness tests.

An analysis of the experimental results shows that the equivalent thermal conductivity increases with
the pressure on account of reduction in the contact resistance. The change is largest up to 8 - 10° N/ m?.

The temperature also affects Ag; low pe means that much of the heat is transmitted through the air
films, and the effects of temperature are then most prominent. The transfer is controlled by the elasto-
plastic behavior at higher p,, and the decisive feature is the number of contact spots; the effects of tem-
perature are then small,

TABLE 1. Basic Characteristics of the Packs

Actual | K i} g .
; E v;
sheet e N oh% | m
Treatment T B SR
Steel G g reatme thickness, | g . |~ & g% —g 2
. f= i1 Q [& Qe 9
g, £ mm |2 818 §1§EE 22
1 " E31 3 | Oxidation at 600°C in 0,4 37,0115,6 | — | 14
airforlh
2 Fa4 3 — 0,37 (37,94(5,194{ — | 14
F44 3 | Reduction at 900°C for 0,37 37,945,194 — | 14
2 h, cooling with N
container to 200°C
4 | Hyperco 7 — 0,365 [38,02}5,11 | — ! 14
5% | Hyperco 7 | Coating with tale 0,395/0,365 | 38,02|4,165 | 0,015} 11
suspension.

*Pack of five codted sheets and six uncoated sheets placed alternately.

S. Ordzhonikidze Aviation Institute, Moscow. Original article submitted November 23, 1970; ab-
stract submitted December 31, 1970.
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Fig. 1. Values of Ag, W/ m-deg, as
functions of contact pressure p, (N
/m?) for: 1-4) E44; 5, 6) £31; 7-10)
Hyperco; 1) t =106-115°C, q =1.07-
2.18 W/ cm?; 2) 151-164; 2.28-3.14;
3) 103-109; 1.89-2.76; 4) 154-163;
)/-*'*’ 3.06-4.4; 5) 102-112; 1.29-1.98; 6)
161-180; 2.7-3.36; 7) 99-107; 1.77~
2.44; 8) 60-66; 0.98-1.23; 9) 107-115;

[ 2.04-2.52; 10) 165-174°C; 3.52-4.21

/ ,ﬂ/ W/ cem?,
-/.a 4 =
2 (-
N2
7
0 / 2 PR

The results for £44 and Hyperco show that reduction increases Ag by up to 15%, while talc coating
reduces it by a factor 1.6-1.9.

The results can be used in calculations on laminated cores.

DETERMINATION OF THE DIFFUSION COEFFICIENT
OF HYDROGEN IN METALS ACCORDING TO THE
STATIONARY-FLOW METHOD

V. E. Volkov, R. A. Ryabov, UDC 669.788:539.219.3
and P, V. Gel'd

In the article an expression is obtained for the estimate of the oétimal time of degassing of a sample
between two successive measurements of the diffusion coefficient of hydrogen in metals according to the
stationary-flow method.

In the case of a completely degassed sample, the length L intercepted on the time axis by the asymp-
tote of the time dependence of the pressure of the gas diffusing into the volume V equals 7%/6D (I is the
sample thickness; and D is the diffusion coefficient). For the case of the same sample partially degassed
during a time t' larger than the relaxation time, the relative deviation of this length from I is determined
from the expression

12 D2t/
& = — exp [—— 2 .

S, M. Kirov Ural Polytechnic Institute, Sverdlovsk. Original article submitted July 2, 1970; ab-
stract submitted December 31, 1970.
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From this expression we can obtain the optimal degassing time of the sample, which enables us to de-
termine a value of the diffusion coefficient with systematic deviation not exceeding «.

APPROXIMATE SOLUTION OF A TEMPERATURE PROBLEM

O. F. Titova and A. S. Trofimov UDC 536.2.01

In the article a solution is presented for a temperature problem by an approximate method.

The main problem of the approximate method is the reduction of partial differential equations to
a system of ordinary differential equations with the condition of minimum error of the solution. One of
the most useful methods is the method of the quasistationary temperature distribution, in which it is as-
sumed that the temperature field varies in the same way as does the temperature. However, it is im-
possible satisfactorily to describe the function for the variation of the temperature field over the entire
time interval by the first-order equation that reiates the temperatures of interest to us.

In the article a method using a second-order equation is suggested for decreasing the error of the
solution obtained. As an example we take a single-layer plate with heat release, thermally insulated on
one side and washed by a coolant flow on the other side. A system of ordinary differential equations re-
lates the plate femperature averaged over the cross section and the perturbations (internal sources of
heat release and temperature of the cooling coolant) in nonstationary conditions.

Calculations show that a small complication in the system of equations leads to a more exact solu-
tion of the temperature-calculation problem (the variability of the coefficient of heat exchange is allowed
for in the equations). Figure 1 gives a comparison between the approximate solution obtained and the exact
solution [1]. We see from Fig. 1 that for large times the exact and approximate solutions agree, and for
small times our second-order approximation differs only very slightly from the exact solution, whereas
the quasistationary solution gives qualitatively incorrect results.

The proposed method can be used also for more co‘mplex systems — a multilayer plate, a cylinder,
and others with two-sided heat exchange, with distributed heat sources, etc.
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/V ——— 3 3) second-order approximation.
g1 /
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CALCULATION OF TEMPERATURE FIELDS OF SQOLIDS
PLACED IN A CONTAINER, WITH NONLINEAR
BOUNDARY CONDITIONS

N. M. Belyaev and A. A. Ryadno* UDC 536.24

The problem of determining the nonstationary temperature field of a material inside a metal con-
tainer, when the heat flux outside is related to the temperature of the container surface by a nonlinear
function, reduces to the solution of a nonlinear Volterra integral equation, second order with respect to
the temperature of the container. To simplify the solution of the obtained integral equation we consider
two periods — quasistationary and initial. For the quasistationary conditions an exact analytical solution
is obtained. The initial period is investigated using the integral method. Calculation formulas are given
for the case of radiative —convective heating. The solutions obtained enable us, for high-temperature heat-
ing conditions, to take account of the effect of the specific heat of the container on the temperature distri-
bution in solids of classical shape inside the container. »

MATHEMATICAL DESCRIPTION OF TRANSIENTS IN:
THERMOELECTRIC POWER SOURCES WITH
DISTRIBUTED PARAMETERS

A, P. Baranov, Yu. G. Manasyan, UDC 621.362
and A, E, Solov'evft

Increased power and performance in thermoelectric power sources require one to consider the tem-
perature gradients at heat-transfer surfaces on account of cooling of the heat carrier and heating of the
coolant at finite flow rates. This requires a mathematical description of the transients that incorporates
this gradient.

The temperature is represented by continuous functions with piecewise-continuous derivatives up to
the second order, inclusive.

The transients in a system with flat elements are described by a system of nonlinear inhomogeneous
equations of parabolic type incorporating the Peltier, Thomson, and Joule effects in the presence of gra-
dients at the surfaces.

Analytic expressions are derived for the current, voltage, and power in terms of the temperature
distribution in the elements for the following cases:

1. The electrical parameters are expressed via integral mean characteristics for the temperature
distributions. The units are joined in series and the load is resistive. There is negligible insula-
tion leakage,

2. As 1, but leakage must be considered.

3. The electrical parameters are defined in terms of the temperature distribution on the basis of
constanttemperature gradient along the y axis, with the partial derivatives replaced by finite-
difference relations. The load is resistive and the leakage is negligible,

The equations allow one to simulate on a computer the transients in the elements and the power source.

*State University, Dnepropetrovsk. Original article submitted October 28, 1970; abstract submitted
Japuary 5, 1971,
TOriginal article submitted November 2, 1970; abstract submitted January 27, 1971,
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A TURBULENT AIR JET PASSING THROUGH
A SEMIPERMEABLE OBSTACLE

V. F. Dunskii and L. I. Mondrus UDC 532.517.4

There are various technical problems involving passage of turbulent jets through permeable ob-
stacles. A study has already been made [1] of passage through a planar grating, and here we consider the
more general case of passage through a semipermeable layer.

The momentum M is constant in the incident part of the jet, but it decreases in the layer. The de-
crease in a distance dx is

AM = — EMdx, (1)

where ¢ is a constant for the layer and characterizes the permeability.

We solve this equation and assume that the velocity profile remains similar in an axially symmetric
jet, so that the boundaries remain rectilinear [2]; we also assume that the profiles correspond approximately
to that for the unperturbed jet [2], which gives us an equation for the air flow through an arbitrary cross
section within the layer:

Qo~0.484 UyRyx exp [—- fx—n) ; xl)] . (2)
It follows from (2) that the flow rate increases with x for x = x,, and also that Q, — 0 for x — «. The

flow rate initially increases with x but then decreases; but the latter is physically impossible, so the above

assumptions about the velocity profile are physically possible only if the air flow rate within the layer in-

creases with x, The critical layer thickness is then

(3)

2
Axcr: g — Xg-

If the thickness exceeds this, we assume that the rate is constant, which means that the boundaries
must be curvilinear, and the jet expands more rapidly than does an unperturbed one.

The critical thickness becomes negative if 2/£¢ < x;, which means physically that the jet is unable to
overcome the obstacle completely when there is a layer of low permeability fairly remote from the nozzle.
The layer transmits only part of the jet, as in [1].

These results are confirmed qualitatively by photographic tests on jets, and quantitatively by the
profiles of the total and static pressures in front of the layer and behind it.

NOTATION
M is the momentum;
£ is the layer permeability;
X is the distance from the initial section of jet;
X is the distance from that section to the front of the layer;
Ax is the layer thickness;
Aoy is the critical layer thickness;
R, is the nozzle radius;
Ug is the mean air speed in the initial section;
Q is the air flow rate in the cross section.
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PARAMETERS OF NONEQUILIBRIUM PLASMA JET
OF HIGH FREQUENCY DISCHARGE IN HELIUM

V. A, Shuvalov UDC 533,932

An experimental study is presented of the parameters of a subsonic nonisothermic rarefied plasma
jet generated by a coaxial source at a frequency of 7 MHz at pressures in the working chamber of 0.03,
0.09, and 0.15 mm Hg and magnetic fields of 40, 30, 25, and 20 Oe in the measuring region. On the axis
in the center of the source, the magnetic field was equal to 800 Oe. A thermoanemometer adapter, a
Langmuir probe with a molybdenum fiber 0.09 mm in diameter and 17 mm long, was used in all the mea-
surements. The temperature Ty, = Ty (V) and volt—ampere Iy = Iy (V) characteristics of the adapter fiber
were read at distances of 50, 75, 100, and 125 mm from the output opening of the source along the jet axis.

For treatment of the electron component the probe characteristics were measured by the Langmuir
method. On the other hand in a subsonic jet where U, £ VkTg/mj, the plasma potential
ke ( 0.7 VEWE)
14-0.97 Sg;

~ !
Po (PIE:OT .

and the concentration of charged particles
ny=1;/0.4¢ 2mal. V 2&T ,jm; erf (V' Rja)
can be determined from the ion part of the probe characteristics. (Here n = eV/kT,, Sgi = UswVm;/2kT,,

and g is the radius of the electrode layer.) It must be noted that the concentration of ions n; was systemati-
cally 1.2-1.4 times lower than the concentration of electrons ng found by the Langmuir method,

The values of the plasma potential determined by the Langmuir method and calculated from Eq. (1)
are found to be in good agreement.

The velocity ratio S, was calculated from the values

e {_v

" Lyl 1)0.5
<ﬂ v } :
v—=1[\7p ) ]
of the measured pressure in the source p, and the static pressure in the jet p. The maximum error in de-
termining S, did not exceed +10%.

The temperature Ty of the neutral particles was determined from the level of the energetic balance
of the fiber. The maximum relative error in determining Tp did not exceed +18%.

The values of T, found made it possible to evaluate the mass velocity of the jet Us ~ 800, 600, and
480 m/ sec and the concentration of neutral particles n, ~ 0.76, 2.01, and 3.29 - 101% em=% at p = 0.03, 0.09,
and 0.15 mm Hg, respectively.

The analysis of volt—ampere and temperature characteristics of the thermoanemometer —Langmuir
probe made it possible to obtain the distribution of the basic local parameters: temperature of electrons
Te, ions Tj, and neutral particles Ty, the concentration of charged particles, and the plasma potential
along the jet. The results of the studies showed that an increase in discharge and gas pressure leads to a
decrease in the temperature of the charged particles, the Mach number, andthe velocity of the jet, and in-
creases the temperature of the neutral gas. The decrease in the temperature of the charged particles along
the jet was accompanied by a slight decrease in the degree of jonization. The temperature of the neutral
gas along the jet remained constant within the limits of measurement error.

Original article submitted April 7, 1970; abstract submitted November 23, 1970.
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TEMPERATURE DEPENDENCE OF THE DAMPING
COEFFICIENTS FOR A DYNAMICAL SYSTEM
WITH A SINGULAR KERNEL

S. I. Meshkov and Yu. A, Rossikhin UDC 532.135

Algebraic equations in fractional powers are the characteristic equations encountered for damped
free oscillations in a one-mass system the memory effect of which is represented by weakly singular
kernels. If the kernels are of Abel, Rabotnov, or Rzhanitsyn aftereffect type, the characteristic equations
do not have real roots on the first sheet of the Riemann surface and so they cannot be used to describe
aperiodic damping. It is found from the roots and the retardation and relaxation spectra that there is a
region of aperiodic motion only if the system has its d-function singularities confined to the relaxation-
time spectrum.

An example is considered of a Rzhanitsyn relaxation kernel, for which the following is the initial
equation of motion in tersm of the displacement x after a pulse Fd(t):
¥ 4o x— (0%, —0)) g R(¥) x (t—t') dt' = F§ (1). (1
0
Here wo, and wg are the natural frequencies of the unrelaxed and relaxed elastic vibrations, while R(t) is
the relaxation kernel:

T,
7l exp (— t/t,) sin qy ¥ TP 2 exp (—t/1) dv 5
R()= - - v (2
INGINA o, (7, — T
0
0<p 1.

By analogy with a standard linear body (y =1), the solutions to (1) with the properties of (2) described
vibrational and limitational motions. The equilibrium position is determined by the retardation and inertial
features via a ILaplace transform, the distribution of which becomes that of the retardation times in the
quasistatic case,

The hehavior of the roots is examined in the principal complex plane, and it is found that Q influences
the temperature dependence of the damping coefficients and of the corresponding amplitudes for the vibra-
tional and limitational motions.

Original article submitted March 10, 1970; abstract submitted January 13, 1971.
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